This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered triple membership in a triple Cartesian product. (Contributed by Scott Fenton, 31-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | otelxp | |- ( <. A , B , C >. e. ( ( D X. E ) X. F ) <-> ( A e. D /\ B e. E /\ C e. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp | |- ( <. <. A , B >. , C >. e. ( ( D X. E ) X. F ) <-> ( <. A , B >. e. ( D X. E ) /\ C e. F ) ) |
|
| 2 | opelxp | |- ( <. A , B >. e. ( D X. E ) <-> ( A e. D /\ B e. E ) ) |
|
| 3 | 1 2 | bianbi | |- ( <. <. A , B >. , C >. e. ( ( D X. E ) X. F ) <-> ( ( A e. D /\ B e. E ) /\ C e. F ) ) |
| 4 | df-ot | |- <. A , B , C >. = <. <. A , B >. , C >. |
|
| 5 | 4 | eleq1i | |- ( <. A , B , C >. e. ( ( D X. E ) X. F ) <-> <. <. A , B >. , C >. e. ( ( D X. E ) X. F ) ) |
| 6 | df-3an | |- ( ( A e. D /\ B e. E /\ C e. F ) <-> ( ( A e. D /\ B e. E ) /\ C e. F ) ) |
|
| 7 | 3 5 6 | 3bitr4i | |- ( <. A , B , C >. e. ( ( D X. E ) X. F ) <-> ( A e. D /\ B e. E /\ C e. F ) ) |