This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a unique ordered pair fulfilling a wff iff its components fulfil a corresponding wff. (Contributed by AV, 2-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opreuopreu.a | ⊢ ( ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) → ( 𝜓 ↔ 𝜑 ) ) | |
| Assertion | opreuopreu | ⊢ ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opreuopreu.a | ⊢ ( ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) → ( 𝜓 ↔ 𝜑 ) ) | |
| 2 | elxpi | ⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ) | |
| 3 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ) → 𝑝 = 〈 𝑎 , 𝑏 〉 ) | |
| 4 | vex | ⊢ 𝑎 ∈ V | |
| 5 | vex | ⊢ 𝑏 ∈ V | |
| 6 | 4 5 | op1st | ⊢ ( 1st ‘ 〈 𝑎 , 𝑏 〉 ) = 𝑎 |
| 7 | 6 | eqcomi | ⊢ 𝑎 = ( 1st ‘ 〈 𝑎 , 𝑏 〉 ) |
| 8 | 4 5 | op2nd | ⊢ ( 2nd ‘ 〈 𝑎 , 𝑏 〉 ) = 𝑏 |
| 9 | 8 | eqcomi | ⊢ 𝑏 = ( 2nd ‘ 〈 𝑎 , 𝑏 〉 ) |
| 10 | 7 9 | pm3.2i | ⊢ ( 𝑎 = ( 1st ‘ 〈 𝑎 , 𝑏 〉 ) ∧ 𝑏 = ( 2nd ‘ 〈 𝑎 , 𝑏 〉 ) ) |
| 11 | fveq2 | ⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 1st ‘ 𝑝 ) = ( 1st ‘ 〈 𝑎 , 𝑏 〉 ) ) | |
| 12 | 11 | eqeq2d | ⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝑎 = ( 1st ‘ 𝑝 ) ↔ 𝑎 = ( 1st ‘ 〈 𝑎 , 𝑏 〉 ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 2nd ‘ 𝑝 ) = ( 2nd ‘ 〈 𝑎 , 𝑏 〉 ) ) | |
| 14 | 13 | eqeq2d | ⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝑏 = ( 2nd ‘ 𝑝 ) ↔ 𝑏 = ( 2nd ‘ 〈 𝑎 , 𝑏 〉 ) ) ) |
| 15 | 12 14 | anbi12d | ⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) ↔ ( 𝑎 = ( 1st ‘ 〈 𝑎 , 𝑏 〉 ) ∧ 𝑏 = ( 2nd ‘ 〈 𝑎 , 𝑏 〉 ) ) ) ) |
| 16 | 10 15 | mpbiri | ⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) ) |
| 17 | 16 1 | syl | ⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝜓 ↔ 𝜑 ) ) |
| 18 | 17 | biimprd | ⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝜑 → 𝜓 ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝜑 → 𝜓 ) ) |
| 20 | 19 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ) → 𝜓 ) |
| 21 | 3 20 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ) → ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) ) |
| 22 | 21 | ex | ⊢ ( 𝜑 → ( ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) ) ) |
| 23 | 22 | 2eximdv | ⊢ ( 𝜑 → ( ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) ) ) |
| 24 | 2 23 | syl5com | ⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ( 𝜑 → ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) ) ) |
| 25 | 17 | biimpa | ⊢ ( ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) → 𝜑 ) |
| 26 | 25 | a1i | ⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ( ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) → 𝜑 ) ) |
| 27 | 26 | exlimdvv | ⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ( ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) → 𝜑 ) ) |
| 28 | 24 27 | impbid | ⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ( 𝜑 ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) ) ) |
| 29 | 28 | reubiia | ⊢ ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) ∃ 𝑎 ∃ 𝑏 ( 𝑝 = 〈 𝑎 , 𝑏 〉 ∧ 𝜓 ) ) |