This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015) (Revised by Mario Carneiro, 16-Sep-2015) (Revised by Fan Zheng, 26-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppgval.2 | ⊢ + = ( +g ‘ 𝑅 ) | |
| oppgval.3 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | ||
| Assertion | oppgval | ⊢ 𝑂 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos + 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgval.2 | ⊢ + = ( +g ‘ 𝑅 ) | |
| 2 | oppgval.3 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
| 3 | id | ⊢ ( 𝑥 = 𝑅 → 𝑥 = 𝑅 ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝑅 → ( +g ‘ 𝑥 ) = ( +g ‘ 𝑅 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑥 = 𝑅 → ( +g ‘ 𝑥 ) = + ) |
| 6 | 5 | tposeqd | ⊢ ( 𝑥 = 𝑅 → tpos ( +g ‘ 𝑥 ) = tpos + ) |
| 7 | 6 | opeq2d | ⊢ ( 𝑥 = 𝑅 → 〈 ( +g ‘ ndx ) , tpos ( +g ‘ 𝑥 ) 〉 = 〈 ( +g ‘ ndx ) , tpos + 〉 ) |
| 8 | 3 7 | oveq12d | ⊢ ( 𝑥 = 𝑅 → ( 𝑥 sSet 〈 ( +g ‘ ndx ) , tpos ( +g ‘ 𝑥 ) 〉 ) = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos + 〉 ) ) |
| 9 | df-oppg | ⊢ oppg = ( 𝑥 ∈ V ↦ ( 𝑥 sSet 〈 ( +g ‘ ndx ) , tpos ( +g ‘ 𝑥 ) 〉 ) ) | |
| 10 | ovex | ⊢ ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos + 〉 ) ∈ V | |
| 11 | 8 9 10 | fvmpt | ⊢ ( 𝑅 ∈ V → ( oppg ‘ 𝑅 ) = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos + 〉 ) ) |
| 12 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( oppg ‘ 𝑅 ) = ∅ ) | |
| 13 | reldmsets | ⊢ Rel dom sSet | |
| 14 | 13 | ovprc1 | ⊢ ( ¬ 𝑅 ∈ V → ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos + 〉 ) = ∅ ) |
| 15 | 12 14 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → ( oppg ‘ 𝑅 ) = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos + 〉 ) ) |
| 16 | 11 15 | pm2.61i | ⊢ ( oppg ‘ 𝑅 ) = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos + 〉 ) |
| 17 | 2 16 | eqtri | ⊢ 𝑂 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos + 〉 ) |