This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Lemma for oppfrcl . (Contributed by Zhi Wang, 14-Nov-2025)
|
|
Ref |
Expression |
|
Hypotheses |
oppfrcl.1 |
|
|
|
oppfrcl.2 |
|
|
Assertion |
oppfrcllem |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppfrcl.1 |
|
| 2 |
|
oppfrcl.2 |
|
| 3 |
|
0nelrel0 |
|
| 4 |
2 3
|
ax-mp |
|
| 5 |
|
nelne2 |
|
| 6 |
1 4 5
|
sylancl |
|