This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of a terminal category is a terminal category. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcterm.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppcterm.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | ||
| Assertion | oppcterm | ⊢ ( 𝜑 → 𝑂 ∈ TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcterm.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppcterm.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| 3 | 1 2 | oppctermhom | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) ) |
| 4 | 1 2 | oppctermco | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝑂 ) ) |
| 5 | 1 | fvexi | ⊢ 𝑂 ∈ V |
| 6 | 5 | a1i | ⊢ ( 𝜑 → 𝑂 ∈ V ) |
| 7 | 3 4 2 6 | termcpropd | ⊢ ( 𝜑 → ( 𝐶 ∈ TermCat ↔ 𝑂 ∈ TermCat ) ) |
| 8 | 2 7 | mpbid | ⊢ ( 𝜑 → 𝑂 ∈ TermCat ) |