This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite simple graph represented as ordered pair. (Contributed by AV, 23-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opfusgr | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ↔ ( 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) | |
| 2 | 1 | isfusgr | ⊢ ( 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ↔ ( 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ) ) |
| 3 | opvtxfv | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) | |
| 4 | 3 | eleq1d | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ 𝑉 ∈ Fin ) ) |
| 5 | 4 | anbi2d | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( ( 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ) ↔ ( 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) ) |
| 6 | 2 5 | bitrid | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ↔ ( 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) ) |