This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed theorem form of opelopab . (Contributed by NM, 19-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opelopabt | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopab | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) | |
| 2 | 19.26-2 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) ) ) | |
| 3 | anim12 | ⊢ ( ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) ) → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜓 ↔ 𝜒 ) ) ) ) | |
| 4 | bitr | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜓 ↔ 𝜒 ) ) → ( 𝜑 ↔ 𝜒 ) ) | |
| 5 | 3 4 | syl6 | ⊢ ( ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) ) → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜒 ) ) ) |
| 6 | 5 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜒 ) ) ) |
| 7 | 2 6 | sylbir | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜒 ) ) ) |
| 8 | copsex2t | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜒 ) ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜒 ) ) | |
| 9 | 7 8 | stoic3 | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜒 ) ) |
| 10 | 1 9 | bitrid | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜒 ) ) |