This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions necessary for zero and unity elements to exist. (Contributed by NM, 14-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | op01dm.b | |- B = ( Base ` K ) |
|
| op01dm.u | |- U = ( lub ` K ) |
||
| op01dm.g | |- G = ( glb ` K ) |
||
| Assertion | op01dm | |- ( K e. OP -> ( B e. dom U /\ B e. dom G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op01dm.b | |- B = ( Base ` K ) |
|
| 2 | op01dm.u | |- U = ( lub ` K ) |
|
| 3 | op01dm.g | |- G = ( glb ` K ) |
|
| 4 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 5 | eqid | |- ( oc ` K ) = ( oc ` K ) |
|
| 6 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 7 | eqid | |- ( meet ` K ) = ( meet ` K ) |
|
| 8 | eqid | |- ( 0. ` K ) = ( 0. ` K ) |
|
| 9 | eqid | |- ( 1. ` K ) = ( 1. ` K ) |
|
| 10 | 1 2 3 4 5 6 7 8 9 | isopos | |- ( K e. OP <-> ( ( K e. Poset /\ B e. dom U /\ B e. dom G ) /\ A. x e. B A. y e. B ( ( ( ( oc ` K ) ` x ) e. B /\ ( ( oc ` K ) ` ( ( oc ` K ) ` x ) ) = x /\ ( x ( le ` K ) y -> ( ( oc ` K ) ` y ) ( le ` K ) ( ( oc ` K ) ` x ) ) ) /\ ( x ( join ` K ) ( ( oc ` K ) ` x ) ) = ( 1. ` K ) /\ ( x ( meet ` K ) ( ( oc ` K ) ` x ) ) = ( 0. ` K ) ) ) ) |
| 11 | simpl | |- ( ( ( B e. dom U /\ B e. dom G ) /\ A. x e. B A. y e. B ( ( ( ( oc ` K ) ` x ) e. B /\ ( ( oc ` K ) ` ( ( oc ` K ) ` x ) ) = x /\ ( x ( le ` K ) y -> ( ( oc ` K ) ` y ) ( le ` K ) ( ( oc ` K ) ` x ) ) ) /\ ( x ( join ` K ) ( ( oc ` K ) ` x ) ) = ( 1. ` K ) /\ ( x ( meet ` K ) ( ( oc ` K ) ` x ) ) = ( 0. ` K ) ) ) -> ( B e. dom U /\ B e. dom G ) ) |
|
| 12 | 11 | 3adantl1 | |- ( ( ( K e. Poset /\ B e. dom U /\ B e. dom G ) /\ A. x e. B A. y e. B ( ( ( ( oc ` K ) ` x ) e. B /\ ( ( oc ` K ) ` ( ( oc ` K ) ` x ) ) = x /\ ( x ( le ` K ) y -> ( ( oc ` K ) ` y ) ( le ` K ) ( ( oc ` K ) ` x ) ) ) /\ ( x ( join ` K ) ( ( oc ` K ) ` x ) ) = ( 1. ` K ) /\ ( x ( meet ` K ) ( ( oc ` K ) ` x ) ) = ( 0. ` K ) ) ) -> ( B e. dom U /\ B e. dom G ) ) |
| 13 | 10 12 | sylbi | |- ( K e. OP -> ( B e. dom U /\ B e. dom G ) ) |