This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two nonzero ordinal numbers is nonzero. (Contributed by NM, 28-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | om00el | |- ( ( A e. On /\ B e. On ) -> ( (/) e. ( A .o B ) <-> ( (/) e. A /\ (/) e. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om00 | |- ( ( A e. On /\ B e. On ) -> ( ( A .o B ) = (/) <-> ( A = (/) \/ B = (/) ) ) ) |
|
| 2 | 1 | necon3abid | |- ( ( A e. On /\ B e. On ) -> ( ( A .o B ) =/= (/) <-> -. ( A = (/) \/ B = (/) ) ) ) |
| 3 | omcl | |- ( ( A e. On /\ B e. On ) -> ( A .o B ) e. On ) |
|
| 4 | on0eln0 | |- ( ( A .o B ) e. On -> ( (/) e. ( A .o B ) <-> ( A .o B ) =/= (/) ) ) |
|
| 5 | 3 4 | syl | |- ( ( A e. On /\ B e. On ) -> ( (/) e. ( A .o B ) <-> ( A .o B ) =/= (/) ) ) |
| 6 | on0eln0 | |- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
|
| 7 | on0eln0 | |- ( B e. On -> ( (/) e. B <-> B =/= (/) ) ) |
|
| 8 | 6 7 | bi2anan9 | |- ( ( A e. On /\ B e. On ) -> ( ( (/) e. A /\ (/) e. B ) <-> ( A =/= (/) /\ B =/= (/) ) ) ) |
| 9 | neanior | |- ( ( A =/= (/) /\ B =/= (/) ) <-> -. ( A = (/) \/ B = (/) ) ) |
|
| 10 | 8 9 | bitrdi | |- ( ( A e. On /\ B e. On ) -> ( ( (/) e. A /\ (/) e. B ) <-> -. ( A = (/) \/ B = (/) ) ) ) |
| 11 | 2 5 10 | 3bitr4d | |- ( ( A e. On /\ B e. On ) -> ( (/) e. ( A .o B ) <-> ( (/) e. A /\ (/) e. B ) ) ) |