This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofreq | ⊢ ( 𝑅 = 𝑆 → ∘r 𝑅 = ∘r 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq | ⊢ ( 𝑅 = 𝑆 → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) ) ) | |
| 2 | 1 | ralbidv | ⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) ) ) |
| 3 | 2 | opabbidv | ⊢ ( 𝑅 = 𝑆 → { 〈 𝑓 , 𝑔 〉 ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } = { 〈 𝑓 , 𝑔 〉 ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) } ) |
| 4 | df-ofr | ⊢ ∘r 𝑅 = { 〈 𝑓 , 𝑔 〉 ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } | |
| 5 | df-ofr | ⊢ ∘r 𝑆 = { 〈 𝑓 , 𝑔 〉 ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) } | |
| 6 | 3 4 5 | 3eqtr4g | ⊢ ( 𝑅 = 𝑆 → ∘r 𝑅 = ∘r 𝑆 ) |