This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofreq | |- ( R = S -> oR R = oR S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq | |- ( R = S -> ( ( f ` x ) R ( g ` x ) <-> ( f ` x ) S ( g ` x ) ) ) |
|
| 2 | 1 | ralbidv | |- ( R = S -> ( A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) <-> A. x e. ( dom f i^i dom g ) ( f ` x ) S ( g ` x ) ) ) |
| 3 | 2 | opabbidv | |- ( R = S -> { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) } = { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) S ( g ` x ) } ) |
| 4 | df-ofr | |- oR R = { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) } |
|
| 5 | df-ofr | |- oR S = { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) S ( g ` x ) } |
|
| 6 | 3 4 5 | 3eqtr4g | |- ( R = S -> oR R = oR S ) |