This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of any group element is a divisor of the Euler phi function. (Contributed by Mario Carneiro, 28-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | odzphi | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( odZ ` N ) ` A ) || ( phi ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerth | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) ) |
|
| 2 | simp1 | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> N e. NN ) |
|
| 3 | simp2 | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> A e. ZZ ) |
|
| 4 | 2 | phicld | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( phi ` N ) e. NN ) |
| 5 | 4 | nnnn0d | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( phi ` N ) e. NN0 ) |
| 6 | zexpcl | |- ( ( A e. ZZ /\ ( phi ` N ) e. NN0 ) -> ( A ^ ( phi ` N ) ) e. ZZ ) |
|
| 7 | 3 5 6 | syl2anc | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( A ^ ( phi ` N ) ) e. ZZ ) |
| 8 | 1zzd | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> 1 e. ZZ ) |
|
| 9 | moddvds | |- ( ( N e. NN /\ ( A ^ ( phi ` N ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
|
| 10 | 2 7 8 9 | syl3anc | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
| 11 | 1 10 | mpbid | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) |
| 12 | odzdvds | |- ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ ( phi ` N ) e. NN0 ) -> ( N || ( ( A ^ ( phi ` N ) ) - 1 ) <-> ( ( odZ ` N ) ` A ) || ( phi ` N ) ) ) |
|
| 13 | 5 12 | mpdan | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( N || ( ( A ^ ( phi ` N ) ) - 1 ) <-> ( ( odZ ` N ) ` A ) || ( phi ` N ) ) ) |
| 14 | 11 13 | mpbid | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( odZ ` N ) ` A ) || ( phi ` N ) ) |