This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc . For the usual proof using complex numbers, see 2p2e4 . (Contributed by NM, 18-Aug-2021) Avoid ax-rep , from a comment by Sophie. (Revised by SN, 23-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | o2p2e4 | ⊢ ( 2o +o 2o ) = 4o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on | ⊢ 2o ∈ On | |
| 2 | df-1o | ⊢ 1o = suc ∅ | |
| 3 | peano1 | ⊢ ∅ ∈ ω | |
| 4 | peano2 | ⊢ ( ∅ ∈ ω → suc ∅ ∈ ω ) | |
| 5 | 3 4 | ax-mp | ⊢ suc ∅ ∈ ω |
| 6 | 2 5 | eqeltri | ⊢ 1o ∈ ω |
| 7 | onasuc | ⊢ ( ( 2o ∈ On ∧ 1o ∈ ω ) → ( 2o +o suc 1o ) = suc ( 2o +o 1o ) ) | |
| 8 | 1 6 7 | mp2an | ⊢ ( 2o +o suc 1o ) = suc ( 2o +o 1o ) |
| 9 | df-2o | ⊢ 2o = suc 1o | |
| 10 | 9 | oveq2i | ⊢ ( 2o +o 2o ) = ( 2o +o suc 1o ) |
| 11 | df-3o | ⊢ 3o = suc 2o | |
| 12 | oa1suc | ⊢ ( 2o ∈ On → ( 2o +o 1o ) = suc 2o ) | |
| 13 | 1 12 | ax-mp | ⊢ ( 2o +o 1o ) = suc 2o |
| 14 | 11 13 | eqtr4i | ⊢ 3o = ( 2o +o 1o ) |
| 15 | suceq | ⊢ ( 3o = ( 2o +o 1o ) → suc 3o = suc ( 2o +o 1o ) ) | |
| 16 | 14 15 | ax-mp | ⊢ suc 3o = suc ( 2o +o 1o ) |
| 17 | 8 10 16 | 3eqtr4i | ⊢ ( 2o +o 2o ) = suc 3o |
| 18 | df-4o | ⊢ 4o = suc 3o | |
| 19 | 17 18 | eqtr4i | ⊢ ( 2o +o 2o ) = 4o |