This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | numexp.1 | |- A e. NN0 |
|
| numexpp1.2 | |- M e. NN0 |
||
| numexp2x.3 | |- ( 2 x. M ) = N |
||
| numexp2x.4 | |- ( A ^ M ) = D |
||
| numexp2x.5 | |- ( D x. D ) = C |
||
| Assertion | numexp2x | |- ( A ^ N ) = C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numexp.1 | |- A e. NN0 |
|
| 2 | numexpp1.2 | |- M e. NN0 |
|
| 3 | numexp2x.3 | |- ( 2 x. M ) = N |
|
| 4 | numexp2x.4 | |- ( A ^ M ) = D |
|
| 5 | numexp2x.5 | |- ( D x. D ) = C |
|
| 6 | 2 | nn0cni | |- M e. CC |
| 7 | 6 | 2timesi | |- ( 2 x. M ) = ( M + M ) |
| 8 | 3 7 | eqtr3i | |- N = ( M + M ) |
| 9 | 8 | oveq2i | |- ( A ^ N ) = ( A ^ ( M + M ) ) |
| 10 | 1 | nn0cni | |- A e. CC |
| 11 | expadd | |- ( ( A e. CC /\ M e. NN0 /\ M e. NN0 ) -> ( A ^ ( M + M ) ) = ( ( A ^ M ) x. ( A ^ M ) ) ) |
|
| 12 | 10 2 2 11 | mp3an | |- ( A ^ ( M + M ) ) = ( ( A ^ M ) x. ( A ^ M ) ) |
| 13 | 9 12 | eqtri | |- ( A ^ N ) = ( ( A ^ M ) x. ( A ^ M ) ) |
| 14 | 4 4 | oveq12i | |- ( ( A ^ M ) x. ( A ^ M ) ) = ( D x. D ) |
| 15 | 14 5 | eqtri | |- ( ( A ^ M ) x. ( A ^ M ) ) = C |
| 16 | 13 15 | eqtri | |- ( A ^ N ) = C |