This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nlfn | ⊢ null = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ ( ◡ 𝑡 “ { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnl | ⊢ null | |
| 1 | vt | ⊢ 𝑡 | |
| 2 | cc | ⊢ ℂ | |
| 3 | cmap | ⊢ ↑m | |
| 4 | chba | ⊢ ℋ | |
| 5 | 2 4 3 | co | ⊢ ( ℂ ↑m ℋ ) |
| 6 | 1 | cv | ⊢ 𝑡 |
| 7 | 6 | ccnv | ⊢ ◡ 𝑡 |
| 8 | cc0 | ⊢ 0 | |
| 9 | 8 | csn | ⊢ { 0 } |
| 10 | 7 9 | cima | ⊢ ( ◡ 𝑡 “ { 0 } ) |
| 11 | 1 5 10 | cmpt | ⊢ ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ ( ◡ 𝑡 “ { 0 } ) ) |
| 12 | 0 11 | wceq | ⊢ null = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ ( ◡ 𝑡 “ { 0 } ) ) |