This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013) (Revised by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfsymdif.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| nfsymdif.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | nfsymdif | ⊢ Ⅎ 𝑥 ( 𝐴 △ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsymdif.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | nfsymdif.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | df-symdif | ⊢ ( 𝐴 △ 𝐵 ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) | |
| 4 | 1 2 | nfdif | ⊢ Ⅎ 𝑥 ( 𝐴 ∖ 𝐵 ) |
| 5 | 2 1 | nfdif | ⊢ Ⅎ 𝑥 ( 𝐵 ∖ 𝐴 ) |
| 6 | 4 5 | nfun | ⊢ Ⅎ 𝑥 ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) |
| 7 | 3 6 | nfcxfr | ⊢ Ⅎ 𝑥 ( 𝐴 △ 𝐵 ) |