This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfsup.1 | |- F/_ x A |
|
| nfsup.2 | |- F/_ x B |
||
| nfsup.3 | |- F/_ x R |
||
| Assertion | nfsup | |- F/_ x sup ( A , B , R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsup.1 | |- F/_ x A |
|
| 2 | nfsup.2 | |- F/_ x B |
|
| 3 | nfsup.3 | |- F/_ x R |
|
| 4 | dfsup2 | |- sup ( A , B , R ) = U. ( B \ ( ( `' R " A ) u. ( R " ( B \ ( `' R " A ) ) ) ) ) |
|
| 5 | 3 | nfcnv | |- F/_ x `' R |
| 6 | 5 1 | nfima | |- F/_ x ( `' R " A ) |
| 7 | 2 6 | nfdif | |- F/_ x ( B \ ( `' R " A ) ) |
| 8 | 3 7 | nfima | |- F/_ x ( R " ( B \ ( `' R " A ) ) ) |
| 9 | 6 8 | nfun | |- F/_ x ( ( `' R " A ) u. ( R " ( B \ ( `' R " A ) ) ) ) |
| 10 | 2 9 | nfdif | |- F/_ x ( B \ ( ( `' R " A ) u. ( R " ( B \ ( `' R " A ) ) ) ) ) |
| 11 | 10 | nfuni | |- F/_ x U. ( B \ ( ( `' R " A ) u. ( R " ( B \ ( `' R " A ) ) ) ) ) |
| 12 | 4 11 | nfcxfr | |- F/_ x sup ( A , B , R ) |