This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hypothesis builder for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfoi.1 | ⊢ Ⅎ 𝑥 𝑅 | |
| nfoi.2 | ⊢ Ⅎ 𝑥 𝐴 | ||
| Assertion | nfoi | ⊢ Ⅎ 𝑥 OrdIso ( 𝑅 , 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfoi.1 | ⊢ Ⅎ 𝑥 𝑅 | |
| 2 | nfoi.2 | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | df-oi | ⊢ OrdIso ( 𝑅 , 𝐴 ) = if ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) , ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑎 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑎 ) 𝑧 𝑅 𝑡 } ) , ∅ ) | |
| 4 | 1 2 | nfwe | ⊢ Ⅎ 𝑥 𝑅 We 𝐴 |
| 5 | 1 2 | nfse | ⊢ Ⅎ 𝑥 𝑅 Se 𝐴 |
| 6 | 4 5 | nfan | ⊢ Ⅎ 𝑥 ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) |
| 7 | nfcv | ⊢ Ⅎ 𝑥 V | |
| 8 | nfcv | ⊢ Ⅎ 𝑥 ran ℎ | |
| 9 | nfcv | ⊢ Ⅎ 𝑥 𝑗 | |
| 10 | nfcv | ⊢ Ⅎ 𝑥 𝑤 | |
| 11 | 9 1 10 | nfbr | ⊢ Ⅎ 𝑥 𝑗 𝑅 𝑤 |
| 12 | 8 11 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 |
| 13 | 12 2 | nfrabw | ⊢ Ⅎ 𝑥 { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } |
| 14 | nfcv | ⊢ Ⅎ 𝑥 𝑢 | |
| 15 | nfcv | ⊢ Ⅎ 𝑥 𝑣 | |
| 16 | 14 1 15 | nfbr | ⊢ Ⅎ 𝑥 𝑢 𝑅 𝑣 |
| 17 | 16 | nfn | ⊢ Ⅎ 𝑥 ¬ 𝑢 𝑅 𝑣 |
| 18 | 13 17 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 |
| 19 | 18 13 | nfriota | ⊢ Ⅎ 𝑥 ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) |
| 20 | 7 19 | nfmpt | ⊢ Ⅎ 𝑥 ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) |
| 21 | 20 | nfrecs | ⊢ Ⅎ 𝑥 recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) |
| 22 | nfcv | ⊢ Ⅎ 𝑥 𝑎 | |
| 23 | 21 22 | nfima | ⊢ Ⅎ 𝑥 ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑎 ) |
| 24 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 25 | nfcv | ⊢ Ⅎ 𝑥 𝑡 | |
| 26 | 24 1 25 | nfbr | ⊢ Ⅎ 𝑥 𝑧 𝑅 𝑡 |
| 27 | 23 26 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑎 ) 𝑧 𝑅 𝑡 |
| 28 | 2 27 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑎 ) 𝑧 𝑅 𝑡 |
| 29 | nfcv | ⊢ Ⅎ 𝑥 On | |
| 30 | 28 29 | nfrabw | ⊢ Ⅎ 𝑥 { 𝑎 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑎 ) 𝑧 𝑅 𝑡 } |
| 31 | 21 30 | nfres | ⊢ Ⅎ 𝑥 ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑎 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑎 ) 𝑧 𝑅 𝑡 } ) |
| 32 | nfcv | ⊢ Ⅎ 𝑥 ∅ | |
| 33 | 6 31 32 | nfif | ⊢ Ⅎ 𝑥 if ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) , ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑎 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑎 ) 𝑧 𝑅 𝑡 } ) , ∅ ) |
| 34 | 3 33 | nfcxfr | ⊢ Ⅎ 𝑥 OrdIso ( 𝑅 , 𝐴 ) |