This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of bound-variable hypothesis builder nfima . (Contributed by FL, 15-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfimad.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
| nfimad.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | ||
| Assertion | nfimad | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝐴 “ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfimad.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
| 2 | nfimad.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | |
| 3 | nfaba1 | ⊢ Ⅎ 𝑥 { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐴 } | |
| 4 | nfaba1 | ⊢ Ⅎ 𝑥 { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐵 } | |
| 5 | 3 4 | nfima | ⊢ Ⅎ 𝑥 ( { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐴 } “ { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐵 } ) |
| 6 | nfnfc1 | ⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝐴 | |
| 7 | nfnfc1 | ⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝐵 | |
| 8 | 6 7 | nfan | ⊢ Ⅎ 𝑥 ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝐵 ) |
| 9 | abidnf | ⊢ ( Ⅎ 𝑥 𝐴 → { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐴 } = 𝐴 ) | |
| 10 | 9 | imaeq1d | ⊢ ( Ⅎ 𝑥 𝐴 → ( { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐴 } “ { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐵 } ) = ( 𝐴 “ { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐵 } ) ) |
| 11 | abidnf | ⊢ ( Ⅎ 𝑥 𝐵 → { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐵 } = 𝐵 ) | |
| 12 | 11 | imaeq2d | ⊢ ( Ⅎ 𝑥 𝐵 → ( 𝐴 “ { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐵 } ) = ( 𝐴 “ 𝐵 ) ) |
| 13 | 10 12 | sylan9eq | ⊢ ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝐵 ) → ( { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐴 } “ { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐵 } ) = ( 𝐴 “ 𝐵 ) ) |
| 14 | 8 13 | nfceqdf | ⊢ ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝐵 ) → ( Ⅎ 𝑥 ( { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐴 } “ { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐵 } ) ↔ Ⅎ 𝑥 ( 𝐴 “ 𝐵 ) ) ) |
| 15 | 1 2 14 | syl2anc | ⊢ ( 𝜑 → ( Ⅎ 𝑥 ( { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐴 } “ { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐵 } ) ↔ Ⅎ 𝑥 ( 𝐴 “ 𝐵 ) ) ) |
| 16 | 5 15 | mpbii | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝐴 “ 𝐵 ) ) |