This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of bound-variable hypothesis builder nfima . (Contributed by FL, 15-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfimad.2 | |- ( ph -> F/_ x A ) |
|
| nfimad.3 | |- ( ph -> F/_ x B ) |
||
| Assertion | nfimad | |- ( ph -> F/_ x ( A " B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfimad.2 | |- ( ph -> F/_ x A ) |
|
| 2 | nfimad.3 | |- ( ph -> F/_ x B ) |
|
| 3 | nfaba1 | |- F/_ x { z | A. x z e. A } |
|
| 4 | nfaba1 | |- F/_ x { z | A. x z e. B } |
|
| 5 | 3 4 | nfima | |- F/_ x ( { z | A. x z e. A } " { z | A. x z e. B } ) |
| 6 | nfnfc1 | |- F/ x F/_ x A |
|
| 7 | nfnfc1 | |- F/ x F/_ x B |
|
| 8 | 6 7 | nfan | |- F/ x ( F/_ x A /\ F/_ x B ) |
| 9 | abidnf | |- ( F/_ x A -> { z | A. x z e. A } = A ) |
|
| 10 | 9 | imaeq1d | |- ( F/_ x A -> ( { z | A. x z e. A } " { z | A. x z e. B } ) = ( A " { z | A. x z e. B } ) ) |
| 11 | abidnf | |- ( F/_ x B -> { z | A. x z e. B } = B ) |
|
| 12 | 11 | imaeq2d | |- ( F/_ x B -> ( A " { z | A. x z e. B } ) = ( A " B ) ) |
| 13 | 10 12 | sylan9eq | |- ( ( F/_ x A /\ F/_ x B ) -> ( { z | A. x z e. A } " { z | A. x z e. B } ) = ( A " B ) ) |
| 14 | 8 13 | nfceqdf | |- ( ( F/_ x A /\ F/_ x B ) -> ( F/_ x ( { z | A. x z e. A } " { z | A. x z e. B } ) <-> F/_ x ( A " B ) ) ) |
| 15 | 1 2 14 | syl2anc | |- ( ph -> ( F/_ x ( { z | A. x z e. A } " { z | A. x z e. B } ) <-> F/_ x ( A " B ) ) ) |
| 16 | 5 15 | mpbii | |- ( ph -> F/_ x ( A " B ) ) |