This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016) (Proof shortened by Wolf Lammen, 16-Nov-2019) Avoid ax-12 . (Revised by Wolf Lammen, 19-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfceqi.1 | ⊢ 𝐴 = 𝐵 | |
| Assertion | nfceqi | ⊢ ( Ⅎ 𝑥 𝐴 ↔ Ⅎ 𝑥 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfceqi.1 | ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i | ⊢ ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) |
| 3 | 2 | nfbii | ⊢ ( Ⅎ 𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ 𝑥 𝑦 ∈ 𝐵 ) |
| 4 | 3 | albii | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐵 ) |
| 5 | df-nfc | ⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ) | |
| 6 | df-nfc | ⊢ ( Ⅎ 𝑥 𝐵 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐵 ) | |
| 7 | 4 5 6 | 3bitr4i | ⊢ ( Ⅎ 𝑥 𝐴 ↔ Ⅎ 𝑥 𝐵 ) |