This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighborhood function is a function from the set of the subsets of the base set of a topology. (Contributed by NM, 12-Feb-2007) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neifval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | neif | ⊢ ( 𝐽 ∈ Top → ( nei ‘ 𝐽 ) Fn 𝒫 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neifval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 3 | pwexg | ⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) | |
| 4 | rabexg | ⊢ ( 𝒫 𝑋 ∈ V → { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ∈ V ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝐽 ∈ Top → { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ∈ V ) |
| 6 | 5 | ralrimivw | ⊢ ( 𝐽 ∈ Top → ∀ 𝑥 ∈ 𝒫 𝑋 { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ∈ V ) |
| 7 | eqid | ⊢ ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) | |
| 8 | 7 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝒫 𝑋 { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ∈ V → ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) Fn 𝒫 𝑋 ) |
| 9 | 6 8 | syl | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) Fn 𝒫 𝑋 ) |
| 10 | 1 | neifval | ⊢ ( 𝐽 ∈ Top → ( nei ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ) |
| 11 | 10 | fneq1d | ⊢ ( 𝐽 ∈ Top → ( ( nei ‘ 𝐽 ) Fn 𝒫 𝑋 ↔ ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) Fn 𝒫 𝑋 ) ) |
| 12 | 9 11 | mpbird | ⊢ ( 𝐽 ∈ Top → ( nei ‘ 𝐽 ) Fn 𝒫 𝑋 ) |