This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of neighbors of a vertex in a hypergraph. This version of nbgrval (with N being an arbitrary set instead of being a vertex) only holds for classes whose edges are subsets of the set of vertices (hypergraphs!). (Contributed by AV, 26-Oct-2020) (Proof shortened by AV, 15-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbuhgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nbuhgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | nbuhgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbuhgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nbuhgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | nbgrval | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) |
| 4 | 3 | a1d | ⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) ) |
| 5 | df-nel | ⊢ ( 𝑁 ∉ 𝑉 ↔ ¬ 𝑁 ∈ 𝑉 ) | |
| 6 | 1 | nbgrnvtx0 | ⊢ ( 𝑁 ∉ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
| 7 | 5 6 | sylbir | ⊢ ( ¬ 𝑁 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
| 8 | 7 | adantr | ⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
| 9 | simpl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) → 𝐺 ∈ UHGraph ) | |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝐺 ∈ UHGraph ) |
| 11 | 2 | eleq2i | ⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 12 | 11 | biimpi | ⊢ ( 𝑒 ∈ 𝐸 → 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 13 | edguhgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) | |
| 14 | 10 12 13 | syl2an | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) |
| 15 | velpw | ⊢ ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ 𝑒 ⊆ ( Vtx ‘ 𝐺 ) ) | |
| 16 | 1 | eqcomi | ⊢ ( Vtx ‘ 𝐺 ) = 𝑉 |
| 17 | 16 | sseq2i | ⊢ ( 𝑒 ⊆ ( Vtx ‘ 𝐺 ) ↔ 𝑒 ⊆ 𝑉 ) |
| 18 | 15 17 | bitri | ⊢ ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ 𝑒 ⊆ 𝑉 ) |
| 19 | sstr | ⊢ ( ( { 𝑁 , 𝑛 } ⊆ 𝑒 ∧ 𝑒 ⊆ 𝑉 ) → { 𝑁 , 𝑛 } ⊆ 𝑉 ) | |
| 20 | prssg | ⊢ ( ( 𝑁 ∈ 𝑋 ∧ 𝑛 ∈ V ) → ( ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ↔ { 𝑁 , 𝑛 } ⊆ 𝑉 ) ) | |
| 21 | 20 | bicomd | ⊢ ( ( 𝑁 ∈ 𝑋 ∧ 𝑛 ∈ V ) → ( { 𝑁 , 𝑛 } ⊆ 𝑉 ↔ ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ) |
| 22 | 21 | elvd | ⊢ ( 𝑁 ∈ 𝑋 → ( { 𝑁 , 𝑛 } ⊆ 𝑉 ↔ ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ) |
| 23 | simpl | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → 𝑁 ∈ 𝑉 ) | |
| 24 | 22 23 | biimtrdi | ⊢ ( 𝑁 ∈ 𝑋 → ( { 𝑁 , 𝑛 } ⊆ 𝑉 → 𝑁 ∈ 𝑉 ) ) |
| 25 | 19 24 | syl5com | ⊢ ( ( { 𝑁 , 𝑛 } ⊆ 𝑒 ∧ 𝑒 ⊆ 𝑉 ) → ( 𝑁 ∈ 𝑋 → 𝑁 ∈ 𝑉 ) ) |
| 26 | 25 | ex | ⊢ ( { 𝑁 , 𝑛 } ⊆ 𝑒 → ( 𝑒 ⊆ 𝑉 → ( 𝑁 ∈ 𝑋 → 𝑁 ∈ 𝑉 ) ) ) |
| 27 | 26 | com13 | ⊢ ( 𝑁 ∈ 𝑋 → ( 𝑒 ⊆ 𝑉 → ( { 𝑁 , 𝑛 } ⊆ 𝑒 → 𝑁 ∈ 𝑉 ) ) ) |
| 28 | 27 | ad3antlr | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑒 ⊆ 𝑉 → ( { 𝑁 , 𝑛 } ⊆ 𝑒 → 𝑁 ∈ 𝑉 ) ) ) |
| 29 | 18 28 | biimtrid | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒 → 𝑁 ∈ 𝑉 ) ) ) |
| 30 | 14 29 | mpd | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒 → 𝑁 ∈ 𝑉 ) ) |
| 31 | 30 | rexlimdva | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 → 𝑁 ∈ 𝑉 ) ) |
| 32 | 31 | con3rr3 | ⊢ ( ¬ 𝑁 ∈ 𝑉 → ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ¬ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
| 33 | 32 | expdimp | ⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) ) → ( 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) → ¬ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
| 34 | 33 | ralrimiv | ⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) ) → ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ¬ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ) |
| 35 | rabeq0 | ⊢ ( { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } = ∅ ↔ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ¬ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ) | |
| 36 | 34 35 | sylibr | ⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) ) → { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } = ∅ ) |
| 37 | 8 36 | eqtr4d | ⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) |
| 38 | 37 | ex | ⊢ ( ¬ 𝑁 ∈ 𝑉 → ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) ) |
| 39 | 4 38 | pm2.61i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋 ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) |