This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mul2lt0.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| mul2lt0.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| mul2lt0.3 | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) < 0 ) | ||
| Assertion | mul2lt0rgt0 | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 < 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul2lt0.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | mul2lt0.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | mul2lt0.3 | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) < 0 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( 𝐴 · 𝐵 ) < 0 ) |
| 5 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐵 ∈ ℝ ) |
| 6 | 5 | recnd | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐵 ∈ ℂ ) |
| 7 | 6 | mul02d | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( 0 · 𝐵 ) = 0 ) |
| 8 | 4 7 | breqtrrd | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( 𝐴 · 𝐵 ) < ( 0 · 𝐵 ) ) |
| 9 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 ∈ ℝ ) |
| 10 | 0red | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 0 ∈ ℝ ) | |
| 11 | simpr | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 0 < 𝐵 ) | |
| 12 | 5 11 | elrpd | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐵 ∈ ℝ+ ) |
| 13 | 9 10 12 | ltmul1d | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( 𝐴 < 0 ↔ ( 𝐴 · 𝐵 ) < ( 0 · 𝐵 ) ) ) |
| 14 | 8 13 | mpbird | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 < 0 ) |