This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 2-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mul2lt0.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| mul2lt0.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| mul2lt0.3 | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) < 0 ) | ||
| Assertion | mul2lt0lgt0 | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐵 < 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul2lt0.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | mul2lt0.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | mul2lt0.3 | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) < 0 ) | |
| 4 | 1 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 5 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 6 | 4 5 | mulcomd | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 7 | 6 3 | eqbrtrrd | ⊢ ( 𝜑 → ( 𝐵 · 𝐴 ) < 0 ) |
| 8 | 2 1 7 | mul2lt0rgt0 | ⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐵 < 0 ) |