This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrissmrid.1 | |- ( ph -> A e. ( Moore ` X ) ) |
|
| mrissmrid.2 | |- N = ( mrCls ` A ) |
||
| mrissmrid.3 | |- I = ( mrInd ` A ) |
||
| mrissmrid.4 | |- ( ph -> S e. I ) |
||
| mrissmrid.5 | |- ( ph -> T C_ S ) |
||
| Assertion | mrissmrid | |- ( ph -> T e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrissmrid.1 | |- ( ph -> A e. ( Moore ` X ) ) |
|
| 2 | mrissmrid.2 | |- N = ( mrCls ` A ) |
|
| 3 | mrissmrid.3 | |- I = ( mrInd ` A ) |
|
| 4 | mrissmrid.4 | |- ( ph -> S e. I ) |
|
| 5 | mrissmrid.5 | |- ( ph -> T C_ S ) |
|
| 6 | 3 1 4 | mrissd | |- ( ph -> S C_ X ) |
| 7 | 5 6 | sstrd | |- ( ph -> T C_ X ) |
| 8 | 2 3 1 6 | ismri2d | |- ( ph -> ( S e. I <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) |
| 9 | 4 8 | mpbid | |- ( ph -> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) |
| 10 | 5 | sseld | |- ( ph -> ( x e. T -> x e. S ) ) |
| 11 | 5 | ssdifd | |- ( ph -> ( T \ { x } ) C_ ( S \ { x } ) ) |
| 12 | 6 | ssdifssd | |- ( ph -> ( S \ { x } ) C_ X ) |
| 13 | 1 2 11 12 | mrcssd | |- ( ph -> ( N ` ( T \ { x } ) ) C_ ( N ` ( S \ { x } ) ) ) |
| 14 | 13 | ssneld | |- ( ph -> ( -. x e. ( N ` ( S \ { x } ) ) -> -. x e. ( N ` ( T \ { x } ) ) ) ) |
| 15 | 10 14 | imim12d | |- ( ph -> ( ( x e. S -> -. x e. ( N ` ( S \ { x } ) ) ) -> ( x e. T -> -. x e. ( N ` ( T \ { x } ) ) ) ) ) |
| 16 | 15 | ralimdv2 | |- ( ph -> ( A. x e. S -. x e. ( N ` ( S \ { x } ) ) -> A. x e. T -. x e. ( N ` ( T \ { x } ) ) ) ) |
| 17 | 9 16 | mpd | |- ( ph -> A. x e. T -. x e. ( N ` ( T \ { x } ) ) ) |
| 18 | 2 3 1 7 17 | ismri2dd | |- ( ph -> T e. I ) |