This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function in maps-to notation is a partial map . (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptelpm.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) | |
| mptelpm.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐷 ) | ||
| mptelpm.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| mptelpm.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| Assertion | mptelpm | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐶 ↑pm 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptelpm.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) | |
| 2 | mptelpm.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐷 ) | |
| 3 | mptelpm.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | mptelpm.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 5 | 1 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ) |
| 6 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 7 | 6 1 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 8 | 7 | eqcomd | ⊢ ( 𝜑 → 𝐴 = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 9 | 8 | feq2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ 𝐶 ) ) |
| 10 | 5 9 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ 𝐶 ) |
| 11 | 7 2 | eqsstrd | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐷 ) |
| 12 | 10 11 | jca | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ 𝐶 ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐷 ) ) |
| 13 | elpm2g | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐶 ↑pm 𝐷 ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ 𝐶 ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐷 ) ) ) | |
| 14 | 3 4 13 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐶 ↑pm 𝐷 ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ 𝐶 ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐷 ) ) ) |
| 15 | 12 14 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐶 ↑pm 𝐷 ) ) |