This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of a function defined on an unordered pair. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnmptpr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| rnmptpr.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| rnmptpr.f | ⊢ 𝐹 = ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ 𝐶 ) | ||
| rnmptpr.d | ⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) | ||
| rnmptpr.e | ⊢ ( 𝑥 = 𝐵 → 𝐶 = 𝐸 ) | ||
| Assertion | rnmptpr | ⊢ ( 𝜑 → ran 𝐹 = { 𝐷 , 𝐸 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptpr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | rnmptpr.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | rnmptpr.f | ⊢ 𝐹 = ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ 𝐶 ) | |
| 4 | rnmptpr.d | ⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) | |
| 5 | rnmptpr.e | ⊢ ( 𝑥 = 𝐵 → 𝐶 = 𝐸 ) | |
| 6 | 4 | eqeq2d | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 = 𝐶 ↔ 𝑦 = 𝐷 ) ) |
| 7 | 5 | eqeq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝑦 = 𝐶 ↔ 𝑦 = 𝐸 ) ) |
| 8 | 6 7 | rexprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦 = 𝐶 ↔ ( 𝑦 = 𝐷 ∨ 𝑦 = 𝐸 ) ) ) |
| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦 = 𝐶 ↔ ( 𝑦 = 𝐷 ∨ 𝑦 = 𝐸 ) ) ) |
| 10 | 3 | elrnmpt | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦 = 𝐶 ) ) |
| 11 | 10 | elv | ⊢ ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦 = 𝐶 ) |
| 12 | vex | ⊢ 𝑦 ∈ V | |
| 13 | 12 | elpr | ⊢ ( 𝑦 ∈ { 𝐷 , 𝐸 } ↔ ( 𝑦 = 𝐷 ∨ 𝑦 = 𝐸 ) ) |
| 14 | 9 11 13 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝐹 ↔ 𝑦 ∈ { 𝐷 , 𝐸 } ) ) |
| 15 | 14 | eqrdv | ⊢ ( 𝜑 → ran 𝐹 = { 𝐷 , 𝐸 } ) |