This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function in maps-to notation is a partial map . (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptelpm.b | |- ( ( ph /\ x e. A ) -> B e. C ) |
|
| mptelpm.a | |- ( ph -> A C_ D ) |
||
| mptelpm.c | |- ( ph -> C e. V ) |
||
| mptelpm.d | |- ( ph -> D e. W ) |
||
| Assertion | mptelpm | |- ( ph -> ( x e. A |-> B ) e. ( C ^pm D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptelpm.b | |- ( ( ph /\ x e. A ) -> B e. C ) |
|
| 2 | mptelpm.a | |- ( ph -> A C_ D ) |
|
| 3 | mptelpm.c | |- ( ph -> C e. V ) |
|
| 4 | mptelpm.d | |- ( ph -> D e. W ) |
|
| 5 | 1 | fmpttd | |- ( ph -> ( x e. A |-> B ) : A --> C ) |
| 6 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 7 | 6 1 | dmmptd | |- ( ph -> dom ( x e. A |-> B ) = A ) |
| 8 | 7 | eqcomd | |- ( ph -> A = dom ( x e. A |-> B ) ) |
| 9 | 8 | feq2d | |- ( ph -> ( ( x e. A |-> B ) : A --> C <-> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C ) ) |
| 10 | 5 9 | mpbid | |- ( ph -> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C ) |
| 11 | 7 2 | eqsstrd | |- ( ph -> dom ( x e. A |-> B ) C_ D ) |
| 12 | 10 11 | jca | |- ( ph -> ( ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C /\ dom ( x e. A |-> B ) C_ D ) ) |
| 13 | elpm2g | |- ( ( C e. V /\ D e. W ) -> ( ( x e. A |-> B ) e. ( C ^pm D ) <-> ( ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C /\ dom ( x e. A |-> B ) C_ D ) ) ) |
|
| 14 | 3 4 13 | syl2anc | |- ( ph -> ( ( x e. A |-> B ) e. ( C ^pm D ) <-> ( ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C /\ dom ( x e. A |-> B ) C_ D ) ) ) |
| 15 | 12 14 | mpbird | |- ( ph -> ( x e. A |-> B ) e. ( C ^pm D ) ) |