This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplvsca.p | |- P = ( I mPoly R ) |
|
| mplvsca.n | |- .xb = ( .s ` P ) |
||
| mplvsca.k | |- K = ( Base ` R ) |
||
| mplvsca.b | |- B = ( Base ` P ) |
||
| mplvsca.m | |- .x. = ( .r ` R ) |
||
| mplvsca.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| mplvsca.x | |- ( ph -> X e. K ) |
||
| mplvsca.f | |- ( ph -> F e. B ) |
||
| mplvscaval.y | |- ( ph -> Y e. D ) |
||
| Assertion | mplvscaval | |- ( ph -> ( ( X .xb F ) ` Y ) = ( X .x. ( F ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplvsca.p | |- P = ( I mPoly R ) |
|
| 2 | mplvsca.n | |- .xb = ( .s ` P ) |
|
| 3 | mplvsca.k | |- K = ( Base ` R ) |
|
| 4 | mplvsca.b | |- B = ( Base ` P ) |
|
| 5 | mplvsca.m | |- .x. = ( .r ` R ) |
|
| 6 | mplvsca.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 7 | mplvsca.x | |- ( ph -> X e. K ) |
|
| 8 | mplvsca.f | |- ( ph -> F e. B ) |
|
| 9 | mplvscaval.y | |- ( ph -> Y e. D ) |
|
| 10 | 1 2 3 4 5 6 7 8 | mplvsca | |- ( ph -> ( X .xb F ) = ( ( D X. { X } ) oF .x. F ) ) |
| 11 | 10 | fveq1d | |- ( ph -> ( ( X .xb F ) ` Y ) = ( ( ( D X. { X } ) oF .x. F ) ` Y ) ) |
| 12 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 13 | 6 12 | rabex2 | |- D e. _V |
| 14 | 13 | a1i | |- ( ph -> D e. _V ) |
| 15 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 16 | 1 15 4 6 8 | mplelf | |- ( ph -> F : D --> ( Base ` R ) ) |
| 17 | 16 | ffnd | |- ( ph -> F Fn D ) |
| 18 | eqidd | |- ( ( ph /\ Y e. D ) -> ( F ` Y ) = ( F ` Y ) ) |
|
| 19 | 14 7 17 18 | ofc1 | |- ( ( ph /\ Y e. D ) -> ( ( ( D X. { X } ) oF .x. F ) ` Y ) = ( X .x. ( F ` Y ) ) ) |
| 20 | 9 19 | mpdan | |- ( ph -> ( ( ( D X. { X } ) oF .x. F ) ` Y ) = ( X .x. ( F ` Y ) ) ) |
| 21 | 11 20 | eqtrd | |- ( ph -> ( ( X .xb F ) ` Y ) = ( X .x. ( F ` Y ) ) ) |