This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
mplelsfi
Metamath Proof Explorer
Description: A polynomial treated as a coefficient function has finitely many nonzero
terms. (Contributed by Stefan O'Rear , 22-Mar-2015) (Revised by AV , 25-Jun-2019)
Ref
Expression
Hypotheses
mplrcl.p
⊢ P = I mPoly R
mplrcl.b
⊢ B = Base P
mplelsfi.z
⊢ 0 ˙ = 0 R
mplelsfi.f
⊢ φ → F ∈ B
Assertion
mplelsfi
⊢ φ → finSupp 0 ˙ ⁡ F
Proof
Step
Hyp
Ref
Expression
1
mplrcl.p
⊢ P = I mPoly R
2
mplrcl.b
⊢ B = Base P
3
mplelsfi.z
⊢ 0 ˙ = 0 R
4
mplelsfi.f
⊢ φ → F ∈ B
5
eqid
⊢ I mPwSer R = I mPwSer R
6
eqid
⊢ Base I mPwSer R = Base I mPwSer R
7
1 5 6 3 2
mplelbas
⊢ F ∈ B ↔ F ∈ Base I mPwSer R ∧ finSupp 0 ˙ ⁡ F
8
7
simprbi
⊢ F ∈ B → finSupp 0 ˙ ⁡ F
9
4 8
syl
⊢ φ → finSupp 0 ˙ ⁡ F