This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member Partition-Equivalence Theorem with binary relations, cf. mpet2 . (Contributed by Peter Mazsa, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mpets2 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ◡ E ↾ 𝐴 ) Parts 𝐴 ↔ ≀ ( ◡ E ↾ 𝐴 ) Ers 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpet2 | ⊢ ( ( ◡ E ↾ 𝐴 ) Part 𝐴 ↔ ≀ ( ◡ E ↾ 𝐴 ) ErALTV 𝐴 ) | |
| 2 | cnvepresex | ⊢ ( 𝐴 ∈ 𝑉 → ( ◡ E ↾ 𝐴 ) ∈ V ) | |
| 3 | brpartspart | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ◡ E ↾ 𝐴 ) ∈ V ) → ( ( ◡ E ↾ 𝐴 ) Parts 𝐴 ↔ ( ◡ E ↾ 𝐴 ) Part 𝐴 ) ) | |
| 4 | 2 3 | mpdan | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ◡ E ↾ 𝐴 ) Parts 𝐴 ↔ ( ◡ E ↾ 𝐴 ) Part 𝐴 ) ) |
| 5 | 1cosscnvepresex | ⊢ ( 𝐴 ∈ 𝑉 → ≀ ( ◡ E ↾ 𝐴 ) ∈ V ) | |
| 6 | brerser | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ≀ ( ◡ E ↾ 𝐴 ) ∈ V ) → ( ≀ ( ◡ E ↾ 𝐴 ) Ers 𝐴 ↔ ≀ ( ◡ E ↾ 𝐴 ) ErALTV 𝐴 ) ) | |
| 7 | 5 6 | mpdan | ⊢ ( 𝐴 ∈ 𝑉 → ( ≀ ( ◡ E ↾ 𝐴 ) Ers 𝐴 ↔ ≀ ( ◡ E ↾ 𝐴 ) ErALTV 𝐴 ) ) |
| 8 | 4 7 | bibi12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( ◡ E ↾ 𝐴 ) Parts 𝐴 ↔ ≀ ( ◡ E ↾ 𝐴 ) Ers 𝐴 ) ↔ ( ( ◡ E ↾ 𝐴 ) Part 𝐴 ↔ ≀ ( ◡ E ↾ 𝐴 ) ErALTV 𝐴 ) ) ) |
| 9 | 1 8 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ◡ E ↾ 𝐴 ) Parts 𝐴 ↔ ≀ ( ◡ E ↾ 𝐴 ) Ers 𝐴 ) ) |