This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member Partition-Equivalence Theorem with binary relations, cf. mpet2 . (Contributed by Peter Mazsa, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mpets2 | |- ( A e. V -> ( ( `' _E |` A ) Parts A <-> ,~ ( `' _E |` A ) Ers A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpet2 | |- ( ( `' _E |` A ) Part A <-> ,~ ( `' _E |` A ) ErALTV A ) |
|
| 2 | cnvepresex | |- ( A e. V -> ( `' _E |` A ) e. _V ) |
|
| 3 | brpartspart | |- ( ( A e. V /\ ( `' _E |` A ) e. _V ) -> ( ( `' _E |` A ) Parts A <-> ( `' _E |` A ) Part A ) ) |
|
| 4 | 2 3 | mpdan | |- ( A e. V -> ( ( `' _E |` A ) Parts A <-> ( `' _E |` A ) Part A ) ) |
| 5 | 1cosscnvepresex | |- ( A e. V -> ,~ ( `' _E |` A ) e. _V ) |
|
| 6 | brerser | |- ( ( A e. V /\ ,~ ( `' _E |` A ) e. _V ) -> ( ,~ ( `' _E |` A ) Ers A <-> ,~ ( `' _E |` A ) ErALTV A ) ) |
|
| 7 | 5 6 | mpdan | |- ( A e. V -> ( ,~ ( `' _E |` A ) Ers A <-> ,~ ( `' _E |` A ) ErALTV A ) ) |
| 8 | 4 7 | bibi12d | |- ( A e. V -> ( ( ( `' _E |` A ) Parts A <-> ,~ ( `' _E |` A ) Ers A ) <-> ( ( `' _E |` A ) Part A <-> ,~ ( `' _E |` A ) ErALTV A ) ) ) |
| 9 | 1 8 | mpbiri | |- ( A e. V -> ( ( `' _E |` A ) Parts A <-> ,~ ( `' _E |` A ) Ers A ) ) |