This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopnex.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | mopnex | |- ( D e. ( *Met ` X ) -> E. d e. ( Met ` X ) J = ( MetOpen ` d ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopnex.1 | |- J = ( MetOpen ` D ) |
|
| 2 | 1rp | |- 1 e. RR+ |
|
| 3 | eqid | |- ( x e. X , y e. X |-> if ( ( x D y ) <_ 1 , ( x D y ) , 1 ) ) = ( x e. X , y e. X |-> if ( ( x D y ) <_ 1 , ( x D y ) , 1 ) ) |
|
| 4 | 3 | stdbdmet | |- ( ( D e. ( *Met ` X ) /\ 1 e. RR+ ) -> ( x e. X , y e. X |-> if ( ( x D y ) <_ 1 , ( x D y ) , 1 ) ) e. ( Met ` X ) ) |
| 5 | 2 4 | mpan2 | |- ( D e. ( *Met ` X ) -> ( x e. X , y e. X |-> if ( ( x D y ) <_ 1 , ( x D y ) , 1 ) ) e. ( Met ` X ) ) |
| 6 | 1xr | |- 1 e. RR* |
|
| 7 | 0lt1 | |- 0 < 1 |
|
| 8 | 3 1 | stdbdmopn | |- ( ( D e. ( *Met ` X ) /\ 1 e. RR* /\ 0 < 1 ) -> J = ( MetOpen ` ( x e. X , y e. X |-> if ( ( x D y ) <_ 1 , ( x D y ) , 1 ) ) ) ) |
| 9 | 6 7 8 | mp3an23 | |- ( D e. ( *Met ` X ) -> J = ( MetOpen ` ( x e. X , y e. X |-> if ( ( x D y ) <_ 1 , ( x D y ) , 1 ) ) ) ) |
| 10 | fveq2 | |- ( d = ( x e. X , y e. X |-> if ( ( x D y ) <_ 1 , ( x D y ) , 1 ) ) -> ( MetOpen ` d ) = ( MetOpen ` ( x e. X , y e. X |-> if ( ( x D y ) <_ 1 , ( x D y ) , 1 ) ) ) ) |
|
| 11 | 10 | rspceeqv | |- ( ( ( x e. X , y e. X |-> if ( ( x D y ) <_ 1 , ( x D y ) , 1 ) ) e. ( Met ` X ) /\ J = ( MetOpen ` ( x e. X , y e. X |-> if ( ( x D y ) <_ 1 , ( x D y ) , 1 ) ) ) ) -> E. d e. ( Met ` X ) J = ( MetOpen ` d ) ) |
| 12 | 5 9 11 | syl2anc | |- ( D e. ( *Met ` X ) -> E. d e. ( Met ` X ) J = ( MetOpen ` d ) ) |