This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "At most one" picks a variable value, eliminating an existential quantifier. The proof begins with references *2.21 ( pm2.21 ) and *14.26 ( eupickbi ) from WhiteheadRussell p. 104 and p. 183. (Contributed by Peter Mazsa, 18-Nov-2024) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mopickr | ⊢ ( ( ∃* 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜓 → 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ) | |
| 2 | moeu2 | ⊢ ( ∃* 𝑥 𝜓 ↔ ( ¬ ∃ 𝑥 𝜓 ∨ ∃! 𝑥 𝜓 ) ) | |
| 3 | 19.8a | ⊢ ( 𝜓 → ∃ 𝑥 𝜓 ) | |
| 4 | 3 | con3i | ⊢ ( ¬ ∃ 𝑥 𝜓 → ¬ 𝜓 ) |
| 5 | pm2.21 | ⊢ ( ¬ 𝜓 → ( 𝜓 → 𝜑 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ¬ ∃ 𝑥 𝜓 → ( 𝜓 → 𝜑 ) ) |
| 7 | 6 | a1d | ⊢ ( ¬ ∃ 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) → ( 𝜓 → 𝜑 ) ) ) |
| 8 | eupickbi | ⊢ ( ∃! 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ↔ ∀ 𝑥 ( 𝜓 → 𝜑 ) ) ) | |
| 9 | sp | ⊢ ( ∀ 𝑥 ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜑 ) ) | |
| 10 | 8 9 | biimtrdi | ⊢ ( ∃! 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) → ( 𝜓 → 𝜑 ) ) ) |
| 11 | 7 10 | jaoi | ⊢ ( ( ¬ ∃ 𝑥 𝜓 ∨ ∃! 𝑥 𝜓 ) → ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) → ( 𝜓 → 𝜑 ) ) ) |
| 12 | 2 11 | sylbi | ⊢ ( ∃* 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) → ( 𝜓 → 𝜑 ) ) ) |
| 13 | 1 12 | biimtrid | ⊢ ( ∃* 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝜓 → 𝜑 ) ) ) |
| 14 | 13 | imp | ⊢ ( ( ∃* 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜓 → 𝜑 ) ) |