This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "At most one" picks a variable value, eliminating an existential quantifier. The proof begins with references *2.21 ( pm2.21 ) and *14.26 ( eupickbi ) from WhiteheadRussell p. 104 and p. 183. (Contributed by Peter Mazsa, 18-Nov-2024) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mopickr | |- ( ( E* x ps /\ E. x ( ph /\ ps ) ) -> ( ps -> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom | |- ( E. x ( ph /\ ps ) <-> E. x ( ps /\ ph ) ) |
|
| 2 | moeu2 | |- ( E* x ps <-> ( -. E. x ps \/ E! x ps ) ) |
|
| 3 | 19.8a | |- ( ps -> E. x ps ) |
|
| 4 | 3 | con3i | |- ( -. E. x ps -> -. ps ) |
| 5 | pm2.21 | |- ( -. ps -> ( ps -> ph ) ) |
|
| 6 | 4 5 | syl | |- ( -. E. x ps -> ( ps -> ph ) ) |
| 7 | 6 | a1d | |- ( -. E. x ps -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) ) |
| 8 | eupickbi | |- ( E! x ps -> ( E. x ( ps /\ ph ) <-> A. x ( ps -> ph ) ) ) |
|
| 9 | sp | |- ( A. x ( ps -> ph ) -> ( ps -> ph ) ) |
|
| 10 | 8 9 | biimtrdi | |- ( E! x ps -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) ) |
| 11 | 7 10 | jaoi | |- ( ( -. E. x ps \/ E! x ps ) -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) ) |
| 12 | 2 11 | sylbi | |- ( E* x ps -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) ) |
| 13 | 1 12 | biimtrid | |- ( E* x ps -> ( E. x ( ph /\ ps ) -> ( ps -> ph ) ) ) |
| 14 | 13 | imp | |- ( ( E* x ps /\ E. x ( ph /\ ps ) ) -> ( ps -> ph ) ) |