This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modxai.1 | ⊢ 𝑁 ∈ ℕ | |
| modxai.2 | ⊢ 𝐴 ∈ ℕ | ||
| modxai.3 | ⊢ 𝐵 ∈ ℕ0 | ||
| modxai.4 | ⊢ 𝐷 ∈ ℤ | ||
| modxai.5 | ⊢ 𝐾 ∈ ℕ0 | ||
| modxai.6 | ⊢ 𝑀 ∈ ℕ0 | ||
| modxp1i.9 | ⊢ ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐾 mod 𝑁 ) | ||
| modxp1i.7 | ⊢ ( 𝐵 + 1 ) = 𝐸 | ||
| modxp1i.8 | ⊢ ( ( 𝐷 · 𝑁 ) + 𝑀 ) = ( 𝐾 · 𝐴 ) | ||
| Assertion | modxp1i | ⊢ ( ( 𝐴 ↑ 𝐸 ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modxai.1 | ⊢ 𝑁 ∈ ℕ | |
| 2 | modxai.2 | ⊢ 𝐴 ∈ ℕ | |
| 3 | modxai.3 | ⊢ 𝐵 ∈ ℕ0 | |
| 4 | modxai.4 | ⊢ 𝐷 ∈ ℤ | |
| 5 | modxai.5 | ⊢ 𝐾 ∈ ℕ0 | |
| 6 | modxai.6 | ⊢ 𝑀 ∈ ℕ0 | |
| 7 | modxp1i.9 | ⊢ ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐾 mod 𝑁 ) | |
| 8 | modxp1i.7 | ⊢ ( 𝐵 + 1 ) = 𝐸 | |
| 9 | modxp1i.8 | ⊢ ( ( 𝐷 · 𝑁 ) + 𝑀 ) = ( 𝐾 · 𝐴 ) | |
| 10 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 11 | 2 | nnnn0i | ⊢ 𝐴 ∈ ℕ0 |
| 12 | 2 | nncni | ⊢ 𝐴 ∈ ℂ |
| 13 | exp1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) | |
| 14 | 12 13 | ax-mp | ⊢ ( 𝐴 ↑ 1 ) = 𝐴 |
| 15 | 14 | oveq1i | ⊢ ( ( 𝐴 ↑ 1 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) |
| 16 | 1 2 3 4 5 6 10 11 7 15 8 9 | modxai | ⊢ ( ( 𝐴 ↑ 𝐸 ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |