This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modsubi.1 | ⊢ 𝑁 ∈ ℕ | |
| modsubi.2 | ⊢ 𝐴 ∈ ℕ | ||
| modsubi.3 | ⊢ 𝐵 ∈ ℕ0 | ||
| modsubi.4 | ⊢ 𝑀 ∈ ℕ0 | ||
| modsubi.6 | ⊢ ( 𝐴 mod 𝑁 ) = ( 𝐾 mod 𝑁 ) | ||
| modsubi.5 | ⊢ ( 𝑀 + 𝐵 ) = 𝐾 | ||
| Assertion | modsubi | ⊢ ( ( 𝐴 − 𝐵 ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modsubi.1 | ⊢ 𝑁 ∈ ℕ | |
| 2 | modsubi.2 | ⊢ 𝐴 ∈ ℕ | |
| 3 | modsubi.3 | ⊢ 𝐵 ∈ ℕ0 | |
| 4 | modsubi.4 | ⊢ 𝑀 ∈ ℕ0 | |
| 5 | modsubi.6 | ⊢ ( 𝐴 mod 𝑁 ) = ( 𝐾 mod 𝑁 ) | |
| 6 | modsubi.5 | ⊢ ( 𝑀 + 𝐵 ) = 𝐾 | |
| 7 | 2 | nnrei | ⊢ 𝐴 ∈ ℝ |
| 8 | 4 3 | nn0addcli | ⊢ ( 𝑀 + 𝐵 ) ∈ ℕ0 |
| 9 | 8 | nn0rei | ⊢ ( 𝑀 + 𝐵 ) ∈ ℝ |
| 10 | 6 9 | eqeltrri | ⊢ 𝐾 ∈ ℝ |
| 11 | 7 10 | pm3.2i | ⊢ ( 𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ ) |
| 12 | 3 | nn0rei | ⊢ 𝐵 ∈ ℝ |
| 13 | 12 | renegcli | ⊢ - 𝐵 ∈ ℝ |
| 14 | nnrp | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) | |
| 15 | 1 14 | ax-mp | ⊢ 𝑁 ∈ ℝ+ |
| 16 | 13 15 | pm3.2i | ⊢ ( - 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) |
| 17 | modadd1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ ) ∧ ( - 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑁 ) = ( 𝐾 mod 𝑁 ) ) → ( ( 𝐴 + - 𝐵 ) mod 𝑁 ) = ( ( 𝐾 + - 𝐵 ) mod 𝑁 ) ) | |
| 18 | 11 16 5 17 | mp3an | ⊢ ( ( 𝐴 + - 𝐵 ) mod 𝑁 ) = ( ( 𝐾 + - 𝐵 ) mod 𝑁 ) |
| 19 | 2 | nncni | ⊢ 𝐴 ∈ ℂ |
| 20 | 3 | nn0cni | ⊢ 𝐵 ∈ ℂ |
| 21 | 19 20 | negsubi | ⊢ ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) |
| 22 | 21 | oveq1i | ⊢ ( ( 𝐴 + - 𝐵 ) mod 𝑁 ) = ( ( 𝐴 − 𝐵 ) mod 𝑁 ) |
| 23 | 10 | recni | ⊢ 𝐾 ∈ ℂ |
| 24 | 23 20 | negsubi | ⊢ ( 𝐾 + - 𝐵 ) = ( 𝐾 − 𝐵 ) |
| 25 | 4 | nn0cni | ⊢ 𝑀 ∈ ℂ |
| 26 | 23 20 25 | subadd2i | ⊢ ( ( 𝐾 − 𝐵 ) = 𝑀 ↔ ( 𝑀 + 𝐵 ) = 𝐾 ) |
| 27 | 6 26 | mpbir | ⊢ ( 𝐾 − 𝐵 ) = 𝑀 |
| 28 | 24 27 | eqtri | ⊢ ( 𝐾 + - 𝐵 ) = 𝑀 |
| 29 | 28 | oveq1i | ⊢ ( ( 𝐾 + - 𝐵 ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |
| 30 | 18 22 29 | 3eqtr3i | ⊢ ( ( 𝐴 − 𝐵 ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |