This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem modcld

Description: Closure law for the modulo operation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses modcld.1 φ A
modcld.2 φ B +
Assertion modcld φ A mod B

Proof

Step Hyp Ref Expression
1 modcld.1 φ A
2 modcld.2 φ B +
3 modcl A B + A mod B
4 1 2 3 syl2anc φ A mod B