This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "At most one" can show the existence of a common value. In this case we can infer existence of conjunction from a conjunction of existence, and it is one way to achieve the converse of 19.40 . (Contributed by NM, 5-Apr-2004) (Proof shortened by Andrew Salmon, 9-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mopick2 | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜒 ) ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmo1 | ⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 | |
| 2 | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) | |
| 3 | 1 2 | nfan | ⊢ Ⅎ 𝑥 ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
| 4 | mopick | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) | |
| 5 | 4 | ancld | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜑 → ( 𝜑 ∧ 𝜓 ) ) ) |
| 6 | 5 | anim1d | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝜑 ∧ 𝜒 ) → ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) ) |
| 7 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
| 8 | 6 7 | imbitrrdi | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝜑 ∧ 𝜒 ) → ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) ) |
| 9 | 3 8 | eximd | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( ∃ 𝑥 ( 𝜑 ∧ 𝜒 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) ) |
| 10 | 9 | 3impia | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜒 ) ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |