This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for transitivity of conjunctions inside existential quantifiers. (Contributed by Peter Mazsa, 2-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | moantr | |- ( E* x ps -> ( ( E. x ( ph /\ ps ) /\ E. x ( ps /\ ch ) ) -> E. x ( ph /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom | |- ( E. x ( ph /\ ps ) <-> E. x ( ps /\ ph ) ) |
|
| 2 | 1 | anbi1i | |- ( ( E. x ( ph /\ ps ) /\ E. x ( ps /\ ch ) ) <-> ( E. x ( ps /\ ph ) /\ E. x ( ps /\ ch ) ) ) |
| 3 | 2 | anbi2i | |- ( ( E* x ps /\ ( E. x ( ph /\ ps ) /\ E. x ( ps /\ ch ) ) ) <-> ( E* x ps /\ ( E. x ( ps /\ ph ) /\ E. x ( ps /\ ch ) ) ) ) |
| 4 | 3anass | |- ( ( E* x ps /\ E. x ( ps /\ ph ) /\ E. x ( ps /\ ch ) ) <-> ( E* x ps /\ ( E. x ( ps /\ ph ) /\ E. x ( ps /\ ch ) ) ) ) |
|
| 5 | 3 4 | bitr4i | |- ( ( E* x ps /\ ( E. x ( ph /\ ps ) /\ E. x ( ps /\ ch ) ) ) <-> ( E* x ps /\ E. x ( ps /\ ph ) /\ E. x ( ps /\ ch ) ) ) |
| 6 | mopick2 | |- ( ( E* x ps /\ E. x ( ps /\ ph ) /\ E. x ( ps /\ ch ) ) -> E. x ( ps /\ ph /\ ch ) ) |
|
| 7 | 5 6 | sylbi | |- ( ( E* x ps /\ ( E. x ( ph /\ ps ) /\ E. x ( ps /\ ch ) ) ) -> E. x ( ps /\ ph /\ ch ) ) |
| 8 | 3anass | |- ( ( ps /\ ph /\ ch ) <-> ( ps /\ ( ph /\ ch ) ) ) |
|
| 9 | 8 | exbii | |- ( E. x ( ps /\ ph /\ ch ) <-> E. x ( ps /\ ( ph /\ ch ) ) ) |
| 10 | exsimpr | |- ( E. x ( ps /\ ( ph /\ ch ) ) -> E. x ( ph /\ ch ) ) |
|
| 11 | 9 10 | sylbi | |- ( E. x ( ps /\ ph /\ ch ) -> E. x ( ph /\ ch ) ) |
| 12 | 7 11 | syl | |- ( ( E* x ps /\ ( E. x ( ph /\ ps ) /\ E. x ( ps /\ ch ) ) ) -> E. x ( ph /\ ch ) ) |
| 13 | impexp | |- ( ( ( E* x ps /\ ( E. x ( ph /\ ps ) /\ E. x ( ps /\ ch ) ) ) -> E. x ( ph /\ ch ) ) <-> ( E* x ps -> ( ( E. x ( ph /\ ps ) /\ E. x ( ps /\ ch ) ) -> E. x ( ph /\ ch ) ) ) ) |
|
| 14 | 12 13 | mpbi | |- ( E* x ps -> ( ( E. x ( ph /\ ps ) /\ E. x ( ps /\ ch ) ) -> E. x ( ph /\ ch ) ) ) |