This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndvcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| mndvcl.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| mndvlid.z | ⊢ 0 = ( 0g ‘ 𝑀 ) | ||
| Assertion | mndvrid | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f + ( 𝐼 × { 0 } ) ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndvcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | mndvcl.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | mndvlid.z | ⊢ 0 = ( 0g ‘ 𝑀 ) | |
| 4 | elmapex | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → ( 𝐵 ∈ V ∧ 𝐼 ∈ V ) ) | |
| 5 | 4 | simprd | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝐼 ∈ V ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝐼 ∈ V ) |
| 7 | elmapi | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑋 : 𝐼 ⟶ 𝐵 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
| 9 | 1 3 | mndidcl | ⊢ ( 𝑀 ∈ Mnd → 0 ∈ 𝐵 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → 0 ∈ 𝐵 ) |
| 11 | 1 2 3 | mndrid | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 12 | 11 | adantlr | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 13 | 6 8 10 12 | caofid0r | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f + ( 𝐼 × { 0 } ) ) = 𝑋 ) |