This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two objects in a category built from a monoid are identical. (Contributed by Zhi Wang, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtcbas.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
| mndtcbas.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | ||
| mndtcbas.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | ||
| mndtchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| mndtchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | mndtcbas2 | ⊢ ( 𝜑 → 𝑋 = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtcbas.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
| 2 | mndtcbas.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | |
| 3 | mndtcbas.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 4 | mndtchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | mndtchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | 1 2 3 | mndtcbas | ⊢ ( 𝜑 → ∃! 𝑥 𝑥 ∈ 𝐵 ) |
| 7 | eumo | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐵 → ∃* 𝑥 𝑥 ∈ 𝐵 ) | |
| 8 | moel | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) | |
| 9 | 8 | biimpi | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐵 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) |
| 10 | 6 7 9 | 3syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) |
| 11 | eqeq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 = 𝑦 ↔ 𝑋 = 𝑌 ) ) | |
| 12 | 11 | rspc2gv | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 → 𝑋 = 𝑌 ) ) |
| 13 | 4 5 12 | syl2anc | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 → 𝑋 = 𝑌 ) ) |
| 14 | 10 13 | mpd | ⊢ ( 𝜑 → 𝑋 = 𝑌 ) |