This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two objects in a category built from a monoid are identical. (Contributed by Zhi Wang, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| mndtcbas.m | |- ( ph -> M e. Mnd ) |
||
| mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
||
| mndtchom.x | |- ( ph -> X e. B ) |
||
| mndtchom.y | |- ( ph -> Y e. B ) |
||
| Assertion | mndtcbas2 | |- ( ph -> X = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| 2 | mndtcbas.m | |- ( ph -> M e. Mnd ) |
|
| 3 | mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 4 | mndtchom.x | |- ( ph -> X e. B ) |
|
| 5 | mndtchom.y | |- ( ph -> Y e. B ) |
|
| 6 | 1 2 3 | mndtcbas | |- ( ph -> E! x x e. B ) |
| 7 | eumo | |- ( E! x x e. B -> E* x x e. B ) |
|
| 8 | moel | |- ( E* x x e. B <-> A. x e. B A. y e. B x = y ) |
|
| 9 | 8 | biimpi | |- ( E* x x e. B -> A. x e. B A. y e. B x = y ) |
| 10 | 6 7 9 | 3syl | |- ( ph -> A. x e. B A. y e. B x = y ) |
| 11 | eqeq12 | |- ( ( x = X /\ y = Y ) -> ( x = y <-> X = Y ) ) |
|
| 12 | 11 | rspc2gv | |- ( ( X e. B /\ Y e. B ) -> ( A. x e. B A. y e. B x = y -> X = Y ) ) |
| 13 | 4 5 12 | syl2anc | |- ( ph -> ( A. x e. B A. y e. B x = y -> X = Y ) ) |
| 14 | 10 13 | mpd | |- ( ph -> X = Y ) |