This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace W that minimizes the distance to an arbitrary vector A in a parent inner product space. Theorem 3.3-1 of Kreyszig p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008) (Proof shortened by Mario Carneiro, 9-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | ||
| minveco.m | |||
| minveco.n | |||
| minveco.y | |||
| minveco.u | |||
| minveco.w | |||
| minveco.a | |||
| Assertion | minveco |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | ||
| 2 | minveco.m | ||
| 3 | minveco.n | ||
| 4 | minveco.y | ||
| 5 | minveco.u | ||
| 6 | minveco.w | ||
| 7 | minveco.a | ||
| 8 | eqid | ||
| 9 | eqid | ||
| 10 | oveq2 | ||
| 11 | 10 | fveq2d | |
| 12 | 11 | cbvmptv | |
| 13 | 12 | rneqi | |
| 14 | eqid | ||
| 15 | 1 2 3 4 5 6 7 8 9 13 14 | minvecolem7 |