This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say a mapping from metric C to metric D is continuous at point P . Theorem 14-4.3 of Gleason p. 240. (Contributed by NM, 17-May-2007) (Revised by Mario Carneiro, 4-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metcnp4.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| metcnp4.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| metcnp4.5 | ⊢ ( 𝜑 → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| metcnp4.6 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) | ||
| metcnp4.7 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | ||
| Assertion | metcnp4 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcnp4.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 2 | metcnp4.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 3 | metcnp4.5 | ⊢ ( 𝜑 → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 4 | metcnp4.6 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 5 | metcnp4.7 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | |
| 6 | 1 | met1stc | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ 1stω ) |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → 𝐽 ∈ 1stω ) |
| 8 | 1 | mopntopon | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 10 | 2 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 12 | 7 9 11 5 | 1stccnp | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ) |