This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 18-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | merco1lem18 | ⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merco1 | ⊢ ( ( ( ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ( ( 𝜓 → 𝜒 ) → 𝜓 ) ) → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) | |
| 2 | merco1lem17 | ⊢ ( ( ( ( ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ( ( 𝜓 → 𝜒 ) → 𝜓 ) ) → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) |
| 4 | merco1lem17 | ⊢ ( ( ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) |
| 6 | merco1lem5 | ⊢ ( ( ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) → ⊥ ) → ⊥ ) → ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) ) | |
| 7 | merco1lem3 | ⊢ ( ( ( ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) → ⊥ ) → ⊥ ) → ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) ) → ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) |
| 9 | merco1lem5 | ⊢ ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) → ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) |
| 11 | merco1lem4 | ⊢ ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) → ( ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) ) | |
| 12 | 10 11 | ax-mp | ⊢ ( ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) |
| 13 | merco1 | ⊢ ( ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) → ( 𝜓 → 𝜑 ) ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) ) ) | |
| 14 | merco1lem2 | ⊢ ( ( ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) → ( 𝜓 → 𝜑 ) ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) ) ) → ( ( ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) ) ) ) | |
| 15 | 13 14 | ax-mp | ⊢ ( ( ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) ) ) |
| 16 | 12 15 | ax-mp | ⊢ ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) ) |
| 17 | merco1lem9 | ⊢ ( ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) ) → ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) ) | |
| 18 | 16 17 | ax-mp | ⊢ ( ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) |
| 19 | 5 18 | ax-mp | ⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) |