This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 18-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | merco1lem17 | ⊢ ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜏 ) → ( ( 𝜑 → 𝜒 ) → 𝜏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merco1lem11 | ⊢ ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) | |
| 2 | merco1lem7 | ⊢ ( ( ( ( ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) → 𝜑 ) → ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) → ⊥ ) ) → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) ) | |
| 3 | merco1 | ⊢ ( ( ( ( ( ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) → 𝜑 ) → ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) → ⊥ ) ) → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) ) → ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) → ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) → ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) ) |
| 5 | merco1lem9 | ⊢ ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) → ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) ) → ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) ) |
| 7 | 1 6 | ax-mp | ⊢ ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) |
| 8 | merco1 | ⊢ ( ( ( ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ⊥ ) ) → ⊥ ) → 𝜑 ) → ( ( 𝜑 → 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( ( 𝜑 → 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) |
| 10 | merco1lem11 | ⊢ ( ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) | |
| 11 | merco1lem7 | ⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → 𝜑 ) → ( ( ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) → ⊥ ) ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) | |
| 12 | merco1 | ⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → 𝜑 ) → ( ( ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) → ⊥ ) ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) → ( ( ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) → ( ( ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( ( ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) → ( ( ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) ) |
| 14 | merco1lem9 | ⊢ ( ( ( ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) → ( ( ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) ) → ( ( ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) ) | |
| 15 | 13 14 | ax-mp | ⊢ ( ( ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) ) |
| 16 | 10 15 | ax-mp | ⊢ ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) |
| 17 | merco1 | ⊢ ( ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ⊥ ) ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( ( ( 𝜑 → 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) ) ) | |
| 18 | 16 17 | ax-mp | ⊢ ( ( ( 𝜑 → 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) ) |
| 19 | 9 18 | ax-mp | ⊢ ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) |
| 20 | merco1lem16 | ⊢ ( ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → ( 𝜑 → 𝜒 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) → ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) ) | |
| 21 | 19 20 | ax-mp | ⊢ ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) |
| 22 | merco1lem4 | ⊢ ( ( ( ( 𝜏 → 𝜑 ) → ( ( 𝜑 → 𝜒 ) → ⊥ ) ) → 𝜒 ) → ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → 𝜒 ) ) | |
| 23 | merco1lem11 | ⊢ ( ( ( ( ( 𝜏 → 𝜑 ) → ( ( 𝜑 → 𝜒 ) → ⊥ ) ) → 𝜒 ) → ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → 𝜒 ) ) → ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜏 → 𝜑 ) → ( ( 𝜑 → 𝜒 ) → ⊥ ) ) → 𝜒 ) → ⊥ ) ) → ⊥ ) → ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → 𝜒 ) ) ) | |
| 24 | 22 23 | ax-mp | ⊢ ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜏 → 𝜑 ) → ( ( 𝜑 → 𝜒 ) → ⊥ ) ) → 𝜒 ) → ⊥ ) ) → ⊥ ) → ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → 𝜒 ) ) |
| 25 | merco1 | ⊢ ( ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) → ( ( ( ( 𝜏 → 𝜑 ) → ( ( 𝜑 → 𝜒 ) → ⊥ ) ) → 𝜒 ) → ⊥ ) ) → ⊥ ) → ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → 𝜒 ) ) → ( ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) → ( ( ( ( 𝜏 → 𝜑 ) → ( ( 𝜑 → 𝜒 ) → ⊥ ) ) → 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) ) ) | |
| 26 | 24 25 | ax-mp | ⊢ ( ( ( ( ( 𝜑 → 𝜒 ) → ⊥ ) → 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) → ( ( ( ( 𝜏 → 𝜑 ) → ( ( 𝜑 → 𝜒 ) → ⊥ ) ) → 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) ) |
| 27 | 21 26 | ax-mp | ⊢ ( ( ( ( 𝜏 → 𝜑 ) → ( ( 𝜑 → 𝜒 ) → ⊥ ) ) → 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) |
| 28 | merco1 | ⊢ ( ( ( ( ( 𝜏 → 𝜑 ) → ( ( 𝜑 → 𝜒 ) → ⊥ ) ) → 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) ) → ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜏 ) → ( ( 𝜑 → 𝜒 ) → 𝜏 ) ) ) | |
| 29 | 27 28 | ax-mp | ⊢ ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜒 ) → 𝜏 ) → ( ( 𝜑 → 𝜒 ) → 𝜏 ) ) |