This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for odujoin . (Contributed by Stefan O'Rear, 29-Jan-2015) TODO ( df-riota update): This proof increased from 152 bytes to 547 bytes after the df-riota change. Any way to shorten it? join0 also.
| Ref | Expression | ||
|---|---|---|---|
| Assertion | meet0 | ⊢ ( meet ‘ ∅ ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | eqid | ⊢ ( glb ‘ ∅ ) = ( glb ‘ ∅ ) | |
| 3 | eqid | ⊢ ( meet ‘ ∅ ) = ( meet ‘ ∅ ) | |
| 4 | 2 3 | meetfval | ⊢ ( ∅ ∈ V → ( meet ‘ ∅ ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 } ) |
| 5 | 1 4 | ax-mp | ⊢ ( meet ‘ ∅ ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 } |
| 6 | df-oprab | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 } = { 𝑤 ∣ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 ) } | |
| 7 | br0 | ⊢ ¬ { 𝑥 , 𝑦 } ∅ 𝑧 | |
| 8 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 9 | eqid | ⊢ ( le ‘ ∅ ) = ( le ‘ ∅ ) | |
| 10 | biid | ⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ↔ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ) | |
| 11 | id | ⊢ ( ∅ ∈ V → ∅ ∈ V ) | |
| 12 | 8 9 2 10 11 | glbfval | ⊢ ( ∅ ∈ V → ( glb ‘ ∅ ) = ( ( 𝑥 ∈ 𝒫 ∅ ↦ ( ℩ 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ { 𝑥 ∣ ∃! 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) } ) ) |
| 13 | 1 12 | ax-mp | ⊢ ( glb ‘ ∅ ) = ( ( 𝑥 ∈ 𝒫 ∅ ↦ ( ℩ 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ { 𝑥 ∣ ∃! 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) } ) |
| 14 | reu0 | ⊢ ¬ ∃! 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) | |
| 15 | 14 | abf | ⊢ { 𝑥 ∣ ∃! 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) } = ∅ |
| 16 | 15 | reseq2i | ⊢ ( ( 𝑥 ∈ 𝒫 ∅ ↦ ( ℩ 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ { 𝑥 ∣ ∃! 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) } ) = ( ( 𝑥 ∈ 𝒫 ∅ ↦ ( ℩ 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ ∅ ) |
| 17 | res0 | ⊢ ( ( 𝑥 ∈ 𝒫 ∅ ↦ ( ℩ 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ ∅ ) = ∅ | |
| 18 | 16 17 | eqtri | ⊢ ( ( 𝑥 ∈ 𝒫 ∅ ↦ ( ℩ 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ { 𝑥 ∣ ∃! 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) } ) = ∅ |
| 19 | 13 18 | eqtri | ⊢ ( glb ‘ ∅ ) = ∅ |
| 20 | 19 | breqi | ⊢ ( { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 ↔ { 𝑥 , 𝑦 } ∅ 𝑧 ) |
| 21 | 7 20 | mtbir | ⊢ ¬ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 |
| 22 | 21 | intnan | ⊢ ¬ ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 ) |
| 23 | 22 | nex | ⊢ ¬ ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 ) |
| 24 | 23 | nex | ⊢ ¬ ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 ) |
| 25 | 24 | nex | ⊢ ¬ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 ) |
| 26 | 25 | abf | ⊢ { 𝑤 ∣ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 ) } = ∅ |
| 27 | 6 26 | eqtri | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 } = ∅ |
| 28 | 5 27 | eqtri | ⊢ ( meet ‘ ∅ ) = ∅ |