This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the set exponentiation ( B ^m A ) is a superset of the set of all functions from A onto B . (Contributed by AV, 7-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapfoss | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐵 } ⊆ ( 𝐵 ↑m 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑚 ∈ V | |
| 2 | foeq1 | ⊢ ( 𝑓 = 𝑚 → ( 𝑓 : 𝐴 –onto→ 𝐵 ↔ 𝑚 : 𝐴 –onto→ 𝐵 ) ) | |
| 3 | 1 2 | elab | ⊢ ( 𝑚 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐵 } ↔ 𝑚 : 𝐴 –onto→ 𝐵 ) |
| 4 | fof | ⊢ ( 𝑚 : 𝐴 –onto→ 𝐵 → 𝑚 : 𝐴 ⟶ 𝐵 ) | |
| 5 | forn | ⊢ ( 𝑚 : 𝐴 –onto→ 𝐵 → ran 𝑚 = 𝐵 ) | |
| 6 | 1 | rnex | ⊢ ran 𝑚 ∈ V |
| 7 | 5 6 | eqeltrrdi | ⊢ ( 𝑚 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ V ) |
| 8 | dmfex | ⊢ ( ( 𝑚 ∈ V ∧ 𝑚 : 𝐴 ⟶ 𝐵 ) → 𝐴 ∈ V ) | |
| 9 | 1 4 8 | sylancr | ⊢ ( 𝑚 : 𝐴 –onto→ 𝐵 → 𝐴 ∈ V ) |
| 10 | 7 9 | elmapd | ⊢ ( 𝑚 : 𝐴 –onto→ 𝐵 → ( 𝑚 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝑚 : 𝐴 ⟶ 𝐵 ) ) |
| 11 | 4 10 | mpbird | ⊢ ( 𝑚 : 𝐴 –onto→ 𝐵 → 𝑚 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 12 | 3 11 | sylbi | ⊢ ( 𝑚 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐵 } → 𝑚 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 13 | 12 | ssriv | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐵 } ⊆ ( 𝐵 ↑m 𝐴 ) |